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SYNOPSIS 

The WLF relation connecting viscosity to temperature is used as the basis for a formal 
description of the compositional variation of blend viscosities. An algebraic manipulation 
and the use of the cognate pure-constituent Williams-Landel-Ferry (WLF) factors provide 
a means of introducing composition and pure-constituent viscosities explicitly. Further 
progress follows through the use of a predictive theory of the compositional variation of 
glass-transition temperatures for random, single-phase blends. Particular versions of a 
general relation so obtained are explicated. The theory gives as the simplest case the bench- 
mark linear rule of mixtures, from which it is clear that both positive and negative deviations 
can arise. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Part of the general topic of miscible blends in re- 
lation to the behavior of their pure constituents 
is the viscous behavior of such materials. Relevant 
both to the processing and end use of polymeric 
materials, in the continuum approach the topic 
has been treated in a phenomenological manner 
with an emphasis on providing for the possibility 
of various behaviors through the use of adjustable 
parameters.’,’ Conceptually, this method makes 
any connection to pure-constituent properties an 
indirect one at  best. Of more use would be a 
method of connecting blend and pure-constituent 
viscosities through properties that  are not adjust- 
able or, if they are, that can be determined either 
from pure-constituent behavior or from data other 
than viscosity data. 

I offer here a method of connecting blend viscosity 
with pure-constituent behavior for those compatible 
systems in which the various mer-mer interactions 
do not differ greatly. The simplest nontrivial relation 
given in terms of pure-constituent properties alone 
is more complex than the benchmark “logarithmic 
rule of mixtures” (LROM), which is shown to be a 
particular version of this relation. 
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THEORY 

The purpose of this contribution is largely prag- 
matic; that is, to provide relations for blend viscosity 
q through means of known practical use. Mostly, 
this problem has been addressed through the use of 
the Doolittle equation for viscosity as a function of 
free volume and temperature. However, this method 
results in what is more or less formal guesswork re- 
garding the additivity rules which must be adopted 
or imposed rather than extracted. Consequently, I 
do not use this methodper se. I do, however, use the 
related Williams-Landel-Ferry ( WLF ) equation, 
which can be written in terms of the ratio q / q o  of 
blend viscosity a t  temperature T to the reference 
value of this property at the blend moving reference 
temperature To. This then leads to a method for 
deriving rather than imposing blend relations. 

Suppose formally, then, that for pure constituents 
we may take To = Tg and the following blend relation 
arises : 

Such a supposition maintains continuity of the form 
of the blend WLF relation with corresponding re- 
lations for the various pure constituents. When 
connected to a simple model, the viscosities here are 
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Newtonian. When this relationship is taken as 
purely empirical, that is not so. 

Consistent with various empirical results and for 
the sake of simplicity, the quantities c1 and c2 of eq. 
( 1) are taken as materials-independent (i.e., "uni- 
versal") constants. No doubt there are blends for 
which this may not be an acceptable approximation. 
Indeed, there likely are blends for which eq. ( 1) in 
form is not appropriate. Such systems can be con- 
sidered later, however, the convenience of these two 
approximations providing a very simple starting 
point according to which the viscosity ratio 9 / q o  is 
determined solely by the compositional variation of 
the blend glass-transition temperature Tg. 

Regardless of the particular form of the compo- 
sitional variation of Tg,  it is useful to rewrite eq. ( 1) 
to include explicitly the pure-constituent viscosity 
ratios ti /qo,i. Thus, for a binary blend with a single 
independent composition variable x ,  in general 

in the man- 

and 

where the remainders R1 and RP are evaluated di- 
rectly from eq. ( 4). 

For blends that are largely random and for which 
specific interactions are absent, a theory for the 
compositional variation of Tg gives this in terms of 
pure-constituent glass-transition temperatures Tgj 

and their corresponding increments of heat capacity 
Acpi as4 

The refinement that the Acpi may be temperature- 
dependent is not considered here. Equation ( 5 )  used 
in eq. ( 2 )  provides for explicit evaluation of the 
terms involving Tg to give: 

Equation (6)  is not completely explicit because 

The full version of eq. ( 6 )  includes the use of 

As they stand, eqs. (6 )  and (7)  represent a general 
relation obtained from eqs. ( 1 ) , ( 2 ) , and ( 5 ) . How- 
ever, the number of pure constituent properties re- 
quired for eq. (6)  to be used, eight, is too many to 
allow general statements about the qualitative and 
quantitative nature. Particular versions of eq. ( 6 )  
are more suited for practical use. To this end, con- 
sider first the imposition of the condition 

eq. ( 7 ) .  

90 = 90,l = 90,2 (8) 

This has some empirical basis and also a heuristic 
convenience, and reduces eq. ( 6 )  to 

log 9 = x log 91 + (1 - x)log 9 2  

There are several interesting reductions of eq. (9).  
First, if the term in c1 - log qo is comparatively small, 
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Taking c2 as a “universal” constant, there are no 
adjustable parameters in eq. (10) or its subsequent 
versions. Equation ( 10) includes all composition 
dependences explicitly. This simplifies further if 

to 

log 9 = x log 91 + (1 - x)log 9 2  

Equation (12) is appropriate only for those blends 
for which Tg is a strictly linear function of compo- 
sition. Note also that this relation is from eq. (9)  a 
direct consequence of eq. ( 11 ) , regardless of the 
value of (cl - log qo) .  

A second special case of eq. (9) is obtained if 

and is 

Here, both c1 and c2 are known. Although there is 
data from which the value of qo might be inferred, 
perhaps it is most prudent to take this as an un- 
known constant. 

At  any particular temperature, eqs. (9), (lo), (la), 
and (14) are all of the form 

log 9 = x log 91 + (1 - x)log 92  

where Al ,  A2, and A3 are fixed by comparing the 
particular equation with eq. (15). The simplest ap- 
proximation to the various relations above is made 

when the third terms are negligible and gives the 
final nontrivial viscosity mixing relation as 

log 9 = x log 91 + (1 - x)log 9 2  (16) 

This is the LROM. As the various antecedents of 
this expression show, both positive and negative de- 
viations from this are possible, with corresponding 
negative and positive curvature of log 9 with respect 
to x.  

In both eqs. (12) and (14) the numerators are 
generally the stronger functions of composition and 
these differ most from eq. (16) at x z i. For eqs. (12) 
at this composition the form at x = f is 

TESTS OF REPRESENTATIVE RELATIONS 

These tests are of two types, quantitative and qual- 
itative. One important issue is whether both positive 
and negative deviations from linearity can occur. As 
the form of eqs. ( 12) and ( 14)  indicate, such is the 
case. However, stringent quantitative tests of the 
formal relations given here require several pure- 
constituent data, the fewest of which is four [ see eq. 
( 12)],  as well as blend data. 

For blends of polystyrene (PS) with tetramethyl 
polycarbonate (MPC), Tg is a linear function of 
composition, Tgl and Tgp are known, and the zero- 
shear values of vl, q2, and 9 have been measured at  
230°C: For these blends, then, a critical comparison 
of theory and experiment is possible because all per- 
tinent pure-constituent properties are known, as is 
9. The reported values of the pure-constituent prop- 
erties then show that at this temperature, eq. (12) 
for PS/MPC blends is: 

X (  1 - ~ ) 6 2 2  X 28 
~(81) + (1 - ~ ) ( 1 7 5 )  (18) - 

Here c2 is taken as 51.6OC.3 The reported and cal- 
culated values of log 71 versus x are given in Fig- 
ure 1. 
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For no other miscible blend could I find sufficient 
pure-constituent and other data for an additional 
critical comparison between observed and predicted 
blend viscosity. For PS blends with poly (2,6-di- 
methyl-1,4 phenylene oxide), Prest and Porter' re- 
ported a viscosity enhancement due to blending, but 
their results are generally WLF relation-shifted 
measurements and cannot be compared usefully with 
formal relations themselves derived from the WLF 
equation. 

It would seem that additional experimental data 
are needed to provide further tests of the theory 
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Figure 1 Experimental and calculated variation of log 
9 at 230°C with amount x of MPC for blends of MPC 
with PS. The curve is calculated from eq. (18) of this paper 
from pure-constituent data given by Wisniewsky and col- 
l eague~ .~  The diamond shapes are the data of Wisniewsky 
and coworkers. Blends were made by freeze-drying in 
benzene at  50"C.4 

given here. The general reason for this is that the 
conjunction of necessary pure-constituent data and 
blend data currently seems rare. 

CONCLUSIONS 

None of the blend relations given here require spe- 
cific interactions for the non-linear variation of log 
17 with composition, and thus all of these are limiting 
cases. Both positive and negative curvatures are 
provided for, and under certain circumstances an 
absolute comparison between theory and experiment 
is possible. 
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